Информационно-познавательный сайт     Менеджмент     Курс менеджмента  

Предвидение и прогнозирование.

Примеры расчетов на будущее


Пример 1

«Я пришла к тебе против своей воли, – сказала она твердым голосом, – но мне велено исполнить твою просьбу. Тройка, семерка и туз выиграют тебе сряду...»

Вероятность события, предсказанного пушкинской «пиковой дамой», легко подсчитать с помощью классической формулы. Общее число равновозможных шансов при этом будет равно количеству всех вариантов, в которых могут быть взяты три любые карты из колоды. Считая, что в колоде Германна было 52 карты, это число равно количеству сочетаний из 52 по 3. Заглянув в учебник или справочник по математике, с помощью формул комбинаторики – раздела математики, изучающего комбинации перестановки предметов, получаем 44 200 сочетаний. Числом благоприятствующих шансов здесь будет количество возможных вариантов, включающих заветные карты из той же колоды. Например, сначала какую-нибудь одну из четырех троек, затем одну из четырех семерок, наконец, один из четырех тузов. Годится и любой другой порядок – он значения для Германна не имеет. Общее число таких благоприятствующих сочетаний равно 12.

Применив классическую формулу, получим:

 

Формула 5

 

Пушкин совершенно правильно оценил ситуацию: при такой ничтожной вероятности Германн мог рассчитывать только на чудо...

С помощью классической формулы легко подсчитать, например, вероятность такого обычно небезразличного нам события, как выигрыш в лотерею.

Вот типичный пример условий денежно-вещевой лотереи. На каждый разряд, включающий 10 000 лотерейных билетов, приходится 120 денежных и 80 вещевых выигрышей. Какова вероятность выиграть деньги, вещь или хоть что-нибудь по одному лотерейному билету? Решение столь простой задачи под силу ученику начальной школы, стоит лишь применить классическую формулу:  

 

Формула 6

 

В последнем расчете мы суммируем в числителе дроби, так как число благоприятствующих шансов складывается из количества денежных и вещевых выигрышем.

Несколько сложнее дело обстоит с числовой лотереей, примером которой может служить некогда популярное у нас спортлото. Здесь не все отдано на откуп случаю: каждый участник может избирать номера для вычеркивания по своему полному усмотрению. Участники спортлото как бы играют друг с другом. Однако, как мы сейчас убедимся, и здесь места для случая остается вполне достаточно.

Какова, например, в числовой лотерее вероятность вычеркнуть правильно все 6 номеров из 49? Подсчитано, что вычеркивание 6 цифр из 49 может быть произведено почти 14 миллионами различных способов (точная цифра 13 983 816). Следовательно, вероятность единственного правильного вычеркивания равна  

 

Формула 7

 

Отгадать 5 цифр – это значит указать ошибочно одну из нужных шести. Такую ошибку можно сделать 258 способами. Значит, именно таковы шансы, благоприятствующие угадыванию 5 номеров. А вероятность этого события по классической формуле равна 

 

Формула 8

 

Четыре номера угадает, естественно, значительно больше людей, число благоприятствующих шансов повышается здесь до 13 545. И вероятность, соответственно, будет выше: 

 

Формула 9

 

И наконец, вероятность угадать три номера равна 

 

Формула 10

 

Все это ничтожно мало. Но зато в утешение любителей подобных лотерей теория вероятностей может несколько поднять их шансы на выигрыш (не зря ведь вероятность – мера надежды). Вычеркивая цифры, мы обычно не следим за тем, какую долю составляют среди вычеркнутых однозначные. И порой таких оказывается половина, а то и больше. Так делать не следует. Ведь из 49 цифр карточки однозначных всего 9. И следовательно, вероятность выпадания на них выигравшего номера составляет всего Формула 11 , или 18,4%.

Эту цифру легко проверить, взяв подряд 100 номеров, выигравших в спортлото. Из них около 18 будут однозначными. Значит, вычеркивать цифры тоже нужно с учетом этой вероятности: если у вас одна карточка, из шести вычеркнутых цифр лишь одна должна быть однозначной; если десять карточек, то на девяти вычеркивать по одной однозначной цифре, а на десятой – две.

На непосредственном подсчете основано и свойственное всем людям интуитивное определение вероятности. Скажем, нас спрашивают, что вероятнее, отгадать в спортлото правильно 3 или 4 номера? Мы, не задумываясь, без всякого расчета отвечаем – три. (Правда, мы вряд ли сможем сообразить без расчетов, что для трех номеров вероятность выше почти в 20 раз!)

Вот еще несколько примеров, когда интуиция оказывается несостоятельной.  

 

Пример 2 

Теория вероятностей утверждает, что случайные события, те, которые мы стремимся предсказать, иногда могут происходить довольно часто. Можно произвести такой опыт. Если в вашей учебной группе юношей и девушек примерно поровну, попытайтесь предугадать, кто сейчас первым войдет в помещение: он или она? Сказав «он», вы рискуете ошибиться лишь в половине всех случаев – около 50 % ваших предсказаний обязательно оправдаются.

Зато если вы рискнете предсказать, что оба вошедших подряд окажутся юношами, вероятность резко упадет и окажется равной всего 25 % (по теореме умножения 0,5 х 0,5). Ваше предсказание сбудется лишь в одном случае из четырех.

Существует, однако, нехитрый способ добиться значительного увеличения числа «вещих» предсказаний. Для этого нужно только загадать, кто войдет, несколько по-иному: если вы будете утверждать, что юношей окажется не меньше, чем один из нескольких вошедших подряд, то это ваше предсказание имеет значительно больше шансов на успех. Расчет, сделанный по правилам теории вероятностей, показывает, что вероятность увидеть хотя бы одного юношу из пяти вошедших равна 93 %. Делая такое предсказание, вы практически ничем не рискуете – оно сбудется наверняка.

С высокой точностью сбудется также и предсказание прихода не менее двух юношей (или, если хотите, девушек – это в подобных задачах не имеет значения) из пяти вошедших. Вероятность этого события равна 81 %. Тоже высокая вероятность.

И даже предсказывая, что из пяти человек не менее трех окажутся лицами названного вами пола, вы все еще сохраняете шансы прослыть пророком – вероятность 50 %.

Приведем для разных случаев маленькую, но полезную табличку, взятую из теории вероятностей (табл. 8.5).  

 

Таблица 8.5 

Вероятности прихода предсказанного количества мужчин или женщин (в %) 

Таблица 8.5

 

Посмотрев табличку, вы можете уверенно предсказать, например, что из пяти вошедших будет не менее двух мужчин (или женщин). Вероятность этого события очень большая – 81 %. В восьми случаях из десяти ваше предсказание сбудется.

Этот пример поможет нам приоткрыть один из профессиональных секретов гадалок и прочих прорицателей. Предположим, гадалка предсказывает пять каких-то событий, которые могут равно как произойти, так и не произойти – точно так же, как в одинаковой степени могут войти мужчина и женщина. Такими предсказаниями могут быть, например, «приятная встреча», «лихой недруг», «дальняя дорога», «получение известия», «нечаянная радость» и т. п.

Вероятность того, что сбудутся все пять предсказаний, как показывает расчет, исключительно мала – всего 3,1 %. Но легковерному человеку вполне достаточно, если состоится хотя бы не менее двух-трех из них. Заметьте, не менее – это может быть и два, и три, и четыре, и даже пять. А такое количество пророчеств – мы уже знаем – происходит с высокой вероятностью – 81 %. Поэтому-то часть сделанных гадалкой предсказаний обычно и сбывается. А легковерные люди и не подозревают, что приобщились к «таинствам» теории вероятностей.

Помимо математической стороны дела есть и не менее важные причины психологического происхождения. Вот некоторые из них. Прорицатели, как правило, люди наблюдательные. Вороша карты или перемешивая кофейную гущу, они нет-нет да и ненароком бросят взгляд на доверчивого клиента. Не болезненный ли у него вид («лихой недуг»), не горит ли его взор лихорадочным ожиданием («нечаянная радость»)? Богатый профессиональный опыт подсказывает гадалке, что, кому и как говорить. Не последнюю роль играет и чутье, интуиция. Предсказатели издавна эксплуатируют и то, что человеку свойственно принимать желаемое за действительное. Оракул так формулирует свое откровение, что понимать его можно самым различным образом – как хочется «заказчику». Вспомним предсказание, сделанное дельфийским оракулом Крезу: «Если ты нападешь на персов, великое государство погибнет». Очень уж хотелось Крезу разрушить чужое государство. Вот он и поверил. А государство-то погибло его собственное.

Из множества сделанных предсказаний люди запоминают обычно лишь те, что сбылись. Несбывшиеся пророчества в памяти людей, как правило, не сохраняются. Но стоит сбыться нескольким предсказаниям из множества сделанных, как это немедленно поднимается суеверными людьми на щит, обрастает фантастическими подробностями, обретает достоверность «факта».  

 

Пример 3 

Какова вероятность совпадения дней рождения у любых двух человек, например, из вашей группы в 30 студентов?

На первый взгляд кажется, что поскольку в году 365 дней, то возможность такого совпадения весьма невелика, что-нибудь около Формула 12 = 0,08, или 8 %. Это грубая ошибка. На самом деле следует рассуждать так.

Вначале определим вероятность празднования дня рождения какого-нибудь студента в один из дней года. Здесь число всех возможных случаев – это число возможных дней рождения в году – 365. Число интересующих нас случаев – дней рождения одного человека в году – тоже 365. Вероятность празднования дня рождения студентом в один из дней года равна Формула 13 = 1.

Действительно, можно с полной уверенностью сказать, что любой человек за год отпразднует свой день рождения.

Теперь возьмем любого второго студента и найдем вероятность того, что его день рождения не совпадает с днем рождения первого студента. Число всех возможных случаев – возможных дней рождения в году – остается здесь, конечно, тем же – 365, а вот число интересующих нас случаев уменьшится на 1 – ведь тот день, когда праздники могут совпадать, надо выбросить. Итак, вероятность несовпадения дня рождения второго студента с днем рождения  

 

Формула 14

 

Затем возьмем любого третьего студента вашей группы и найдем подобным же образом, что вероятность несовпадения с днем рождения 

 

Формула 15

 

И далее для всех студентов группы – в том же духе. Зададим себе такой вопрос: а какова вероятность того, что и у первого, и у второго, и у третьего, и у всех остальных студентов дни рождения не совпадут? Вероятности таких событий находят с помощью умножения.

Вероятность несовпадения дней рождения у  

 

Формула 16

 

Число сомножителей равно общему числу студентов. В нашем случае таких сомножителей должно быть 30. Стоит перемножить, и получится, что вероятность несовпадения дней рождения у всех тридцати студентов равна 0,29.

А то, что нас интересует, – вероятность совпадения – мы найдем путем вычитания этой цифры из единицы.

Вероятность совпадения дней рождения у любых двух студентов из тридцати равна 1 - 0,29 = 0,71.

Это высокая вероятность. Значит, почти наверняка в любом коллективе, где 30 человек, есть люди, родившиеся в один день.

А как быть тем коллективам, где число людей 10, 40 или 50, т. е. отличается от 30? На этот случай пригодится готовая таблица вероятностей совпадения дней рождения для разных групп людей – от 5 до 100 и более человек (табл. 8.6). Как она рассчитывается, мы уже знаем.  

Таблица 8.6 

Вероятности совпадения дней рождения у различных групп людей 

Формула 8.6

 

По нашей таблице получается, что, например, если в группе 50 человек, то с вероятностью 0,97, т. е. наверняка можно считать, что дни рождения хотя бы у двух из них совпадут.

Но главный вывод, на который нас наводит история с днями рождения, значительно важнее, чем рассмотренный эпизод: вероятности совпадения любых случайных событий (не только дней рождения) оказываются во много (порой в десятки) раз больше, чем это интуитивно представляется. И то, что мы обычно считаем роковыми совпадениями, на самом деле вполне нормальное явление.

Вот еще примеры, подтверждающие это правило.  

 

Пример 4 

«Со мной вчера произошло нечто невероятное: я встретил на Невском своего школьного приятеля, с которым не виделся 20 лет». Такая или подобная фраза часто сопровождается нелестной оценкой теории вероятностей: мол, вероятности встретиться не было никакой, и вот на тебе.

Теория вероятностей между тем здесь, как и во многих других случаях, остается на высоте. Тот, кто усомнился в ее правильности, видимо, рассуждал так: в Санкт-Петербурге четыре с лишним миллиона жителей. Один из них - упомянутый школьный товарищ. Вероятность такой встречи равна примерно одной четырехмиллионной, т. е. практически нулю. Чем же, как чудом, можно такую встречу объяснить?

Произведем грубую ориентировочную прикидку с помощью теории вероятностей. Начнем с того, что школьный приятель у вас явно не один. Предположим, что их у вас в Санкт-Петербурге 40 человек. Это сразу же увеличит вероятность встречи в 40 раз, и она станет равна одной стотысячной.

Далее, пока вы прогуливались по Невскому мимо вас прошли по крайней мере тысяча человек. Вероятность выросла в 1000 раз и стала равна одной сотой. Это тоже маловато. Но ведь на Невском вы бывали не один раз, а, скажем, 80. Вот вам вероятность и поднялась до 80 %. Теперь уже надо удивляться не тому, что встреча на Невском состоялась, а тому, что это не произошло раньше.  

 

Пример 5 

Мой автомобиль снабжен двумя противоугонными приспособлениями – механическим и электрическим. Каждое из них имеет свою вероятность срабатывания. Это не что иное, как надежность, которую можно установить из опыта: сколько раз из ста предохранитель сработает. Так вот, надежность механического приспособления Рм = 0,9, а электрического – Рэ = 0,8.

Известно, что вероятность того, что сработает какое-нибудь одно приспособление (нам совершенно безразлично, какое именно), равна сумме вероятностей Рм и Рэ. Но вероятность второго предохранителя следует здесь учитывать не полностью, а лишь при условии, что первое приспособление не сработает. Мы исходим того, что если раньше срабатывает, скажем, механическое приспособление, то электрическое уже не нужно. Математическая запись, видимо будет понятна:  

 

Рм или Рэ = Рм + Рэ (1-Рм).

 

По этой формуле вероятность никогда не будет получаться больше единицы. Подставляя цифры, получим:

 

Рм или Рэ = 0,9 + 0,8 (1 - 0,9) = 0,98.

 

Что касается риска угона, то он, как нетрудно сообразить, равен 1 – 0,98 = 0,02.

При таком результате машину довольно спокойно можно оставлять на улице: на сто попыток угона удачных приходится лишь две. В жизни, однако, такое количество попыток угнать вашу машину нереально, и, следовательно, приспособление практически работает надежно.

Совершенно очевидно, что приведенный только что расчет полезно знать не только владельцам индивидуального автотранспорта. Предохранитель от аварии и поломок – важнейший элемент любого современного прибора или механизма.  

 

Пример 6 

Наше предприятие собирается приобрести электронный прибор. На прибор дается заводская гарантия. Знающие люди предупредили, что в нашем городе сейчас можно приобрести приборы, выпускаемые тремя различными заводами, причем шансы получить прибор завода № 1 равны 0,6, завода № 2 – 0,3, а завода № 3 – 0,2. Какого завода попадется нам прибор, мы не знаем; а между прочим, это далеко не безразлично: вероятности того, что прибор проработает без остановки весь гарантийный срок, для каждого завода различные. На заводе № 1 – 0,9, на заводе № 2 – 0,8, на заводе №3-0,6.

Интересно, какова вероятность, что купленный прибор не придется отправлять обратно на завод? Доказано, что вероятность интересующего нас события равна сумме произведения вероятностей получения прибора того или иного завода на соответствующие вероятности их безотказной работы.

 

Вероятность работы прибора в течение гарантийного срока = 0,6 х 0,9 + 0,3 х 0,8 + 0,2 х 0,6 = 0,9.

 

Видимо, прибор покупать стоит: из десяти покупателей лишь одному не повезет.

Формула, по которой мы производили расчет, имеет в теории вероятностей специальное название – формула полной вероятности. Она может пригодиться при определении вероятности безотказной работы в течение заданного времени не только приборов, но и любых других современных машин или механизмов – промышленных автоматов, электронно-вычислительных машин и т. д.  

 

Пример 7 

Предположим, вы задались целью обязательно решить некую трудную предпринимательскую задачу, например добиться большой прибыли, выхода на зарубежный рынок, высокого качества товаров.

Задачи такие обычно решаются не сразу, для этого нужно сделать несколько попыток. Вам, конечно, интересно, сколько таких попыток потребуется.

Вероятность самого события можно рассчитать по классической формуле. Так, если вас интересует вероятность получения определенной нормы прибыли, нужно количество случаев, при которых эта прибыль была вами получена в прошлом (например, 4 раза), разделить на общее число рассматриваемых случаев (например, 20). Тогда искомая вероятность будет равна Формула 16.1 = 0,2, или 20 %.

Но нас интересует не эта цифра. Наша цель – определить, сколько нужно сделать попыток п (на языке теории вероятностей – сколько нужно произвести испытаний), чтобы хотя бы одна из них (больше не требуется) гарантированно дала требуемую норму прибыли. Для решения этой задачи теория вероятности предлагает простую формулу:  

 

Формула 17

 

где Рц есть вероятность, с которой мы хотим добиться своей цели – получить нужную норму прибыли, а Рс – вероятность самого события – получения требуемой прибыли. По данной формуле рассчитана простая, но весьма полезная таблица, позволяющая ответить на вопрос, с которого мы начали (табл. 8.7).  

 

Таблица 8.7 

Количество попыток для достижения цели  

Таблица 8.7

 

Входя в таблицу с нашей вероятностью события – получения прибыли 20 % – и задаваясь по вкусу желаемой вероятностью достижения цели, скажем, 90 %, получим требуемое число попыток, равное 10. Это означает, что на 10 попыток хотя бы одна будет наверняка счастливой.

Хотите гарантии, близкой к 100 %, – увеличьте число попыток до 17.

Расчет вероятности интересующего нас события не менее одного раза имеет весьма широкую область применения. Подобные расчеты необходимы, например, при определении качества различных приборов: какова вероятность того, что хотя бы один узел сложного устройства может выйти из строя? Они позволяют также определить, сколько понадобится испытаний, чтобы прийти хотя бы раз к нужному результату. Скажем, сколько раз нужно прочитать документ, чтобы хотя бы один раз не пропустить ошибки, и т. п.

Итак, уже сегодня, в настоящем времени есть способы пролить свет на завтрашний день, на то, что будет. И для того чтобы предвидеть, нужно уметь этими способами пользоваться.  

 
Курс менеджмента
1.Общие основы менеджмента
    1.1 Менеджмент как вид деятельности, научная дисциплина и предмет изучения
    1.2 Основное содержание менеджмента. Терминология. Классификация
    1.3 Менеджмент и отношения собственности
    1.4 Особенности менеджмента в социальной сфере
2. Развитие и становление менеджмента
    2.1 Исторические предпосылки
    2.2 Основные подходы, концепции и школы менеджмента
    2.3 Развитие и становление менеджмента в России
3. Организация и ее система управления
    3.1 Основные понятия
    3.2. Организация как сложная система
    3.3. Управление сложной системой
4. Формы организации
    4.1 Коммерческие организации
    4.2 Некоммерческие организации
    4.3 Малые предприятия. Объединения организаций. Дочерние и зависимые общества
5. Среда и инфраструктура организации
    5.1 Внутренняя среда организации. Органы управления
    5.2 Внешняя среда организации
    5.3 Инфраструктура менеджмента
    5.4 Договорная среда менеджмента
6. Функции и методы менеджмента
    6.1 Функции менеджмента
    6.2 Экономические методы менеджмента. Хозрасчет. Стимулирование
    6.3 Экономические методы менеджмента. Ценообразование
    6.4 Экономические методы менеджмента. Финансирование и кредитование
    6.5 Административные, социально-психологические и воспитательные методы менеджмента
7. Моделирование ситуаций и выработка управленческих решений
    7.1 Основные понятия. Классификация. Методы
    7.2 Моделирование ситуаций
    7.3 Процесс подготовки и принятия решений
    7.4 Примеры применения количественных методов выработки решений
8. Предвидение и прогнозирование.
    8.1 Основные понятия
    8.2 Предвидение случайных событий
    8.3 Примеры расчетов на будущее
    8.4 Методы прогнозирования
9. Риск менеджера
    9.1 Основные понятия. Теоретические основы
    9.2 Психологические основы риска
    9.3 Коллективный риск
    9.4 Тактика риска в менеджменте
    9.5 Право на риск
10. Управленческая информация
    10.1 Основные понятия
    10.2 Коммуникации в менеджменте
    10.3 Роль паблик рилейшнз в работе над имиджем организации
    10.4 Презентация как часть рекламной кампании
11. Управление персоналом
    11.1 Формальные и неформальные группы
    11.2 Власть. Руководство и лидерство
    11.3 Работа менеджера с людьми
    11.4 Разрешение конфликтов в организации
12. Стиль и имидж менеджера
    12.1 Стиль и имидж менеджера
    12.2 Организационная культура
    12.3 Этика и социальная ответственность менеджера
    12.4 Качества менеджера
    12.5 Управленческий юмор
13. Основы финансового менеджмента
    13.1 Баланс предприятия
    13.2 Счет прибылей и убытков предприятия
    13.3 Анализ хозяйственно-финансовой деятельности предприятия
    13.4 Планирование хозяйственно-финансовой деятельности предприятия
14. Стратегический менеджмент. Инновации
    14.1 Основные понятия
    14.2 Стратегический анализ
    14.3 Инновационный менеджмент
15. Международный менеджмент
    15.1 Основные понятия
    15.2 Формы внешнеэкономической деятельности предприятия
    15.3 Таможенные операции
16. Эффективность менеджмента
    16.1 Основные понятия. Критерии эффективности. Целевая функция
    16.2 В поисках эффективного менеджмента
    16.3 Расчеты эффективного менеджмента
17. Деловой словарь
 

Меню разделов:
Аквариумистика
Биология
Вирусология
История
Материаловедение
Менеджмент
Радиоэлектроника
Фармация
Физика


Фокин Иван.

Презентация программно-технического устройства для управления работы оборудования.

Подробнее тут...

 

© Сайт защищён авторскими правами.

E-mail: portal.inform@gmail.com

 

Рейтинг@Mail.ru